天天微头条丨室温超导技术为何颠覆物理学复旦教授:成果若证实,是诺奖级别!

每日经济新闻

美国罗切斯特大学的物理学家兰加·迪亚斯(Ranga Dias)及其团队日前在美国物理学会会议上宣布,他们已经创造出一种可以在室温(room temperature)条件下实现超导的全新材料。

由于这一发现可能颠覆多个传统行业,给人类科学文明带来巨大改变,消息发布后,在全球引起轩然大波。

图片来源:视觉中国VCG211334113721


(资料图)

与此同时,A股投资圈的小伙伴们也连夜学习和重温基础物理知识,并在各个群展开热烈讨论。市场方面,9日上午,西部超导、联创光电、中超控股等“超导概念股”却高开低走。

股民对“室温超导”展开了热烈讨论。大概内容分为两个方向,一些人认为超导概念要火了,类似此前的AI概念;另外也有人认为概念太新需谨慎。

对于这个火爆的话题,多名专家发表看法,中科院物理所也发文进行科普,称“让子弹再飞一会儿”。

复旦教授:成果若证实,是诺奖级别!

据每日经济新闻报道,北京时间3月9日凌晨,该研究的主要作者及论文主讲人、罗彻斯特大学机械工程系和物理与天文系助理教授兰加·迪亚斯通过邮件接受了记者的独家专访。在专访中,迪亚斯博士对其团队此次的全新发现充满信心,他认为这将是一项重塑21世纪的革命性技术。

不过他同时还指出,“要将我们对室温超导新材料的发现应用到任何规模的现实世界中,还需要几年的艰苦工作。”

兰加·迪亚斯教授(图片来源:罗彻斯特大学官网)

澎湃新闻3月9日报道,上海市高温超导重点实验室主任、上海大学教授蔡传兵认为,这次迪亚斯展示出的研究成果有一定可靠性,“假设它的数据是正确的,等更多科学家跟进它的研究结果后,有可能会出现这个领域的重大突破。”但室温超导所需的1GPa压力仍属于高压范畴,距离实际应用仍非常遥远。

另据上证报报道,复旦大学物理系教授李世燕接受采访时表示,该发现还有待证实。如果被证实,由于其所需压力也不算高(此次的合成和测试条件跟之前相比已经宽松很多),这将是诺贝尔奖级别的成果。从应用场景来看,虽然是室温超导,但是因为需要上万个大气压,其应用的场景会极为有限。目前最重要的还是其他研究组来证实该发现。

李世燕教授在接受上海证券报记者采访时表示,该发现还有待证实,特别是该论文的作者此前已经有两个类似的发现不能被同行重复。

在他看来,就学术方面而言,物理学家们一直都在寻找室温超导体。如果该发现被证实,由于其所需压力也不算高(此次的合成和测试条件跟之前相比已经宽松很多),这将是诺贝尔奖级别的成果。

“从商业上来说,作者自己也成立了公司,他说得很清楚,现在不会把这个样品提供给别人,他们会试图将该材料商业化。虽然从目前合成量来说,样品只有不到1mm,极微量,但因为合成条件并不严苛,不排除后期大规模合成的可能。从应用场景来看,虽然是室温超导,但是因为需要上万个大气压,其应用的场景会极为有限。目前最重要的还是其他研究组来证实该发现。”李世燕说。

中科院物理所:让子弹飞一会儿

此外,中科院物理所对这一话题也进行了科普。

罗彻斯特大学的Dias团队宣称,他们发现了近常压的室温超导体,该超导体是由氢、氮、镥三种元素组成的三元相,该研究团队认为,其在大约10kbar(也就是1GPa,约相当于1万个大气压)下可以实现约294K(也就是约21℃)的室温超导电性。

这时,就有人要问了,超导是个啥,发现个室温超导为啥这么激动?

一、超导及其应用价值

超导态是材料的一种特殊状态,在超导态中,材料处于零电阻的状态中,初中二年级的物理告诉我们,电阻是材料普遍具有的性质,当电流流经材料时,其内部的晶格、杂质等会对载流子运动产生阻碍,载流子本身携带的能量会被转移到晶格上,宏观上造成焦耳热,电势也会相应下降。

而没有电阻的超导体就完全没有上述问题,电流流经超导体,既不会发热,也不会出现压降,因此电流可以无衰减地在超导体中流动。

很明显,超导体的意义是显而易见的,如果我们的电线都采用超导体,那就不会存在能量衰减。我们现阶段使用的特高压输电技术,其实就是提高输电线的电压,来尽可能降低能量损耗,可如果使用了超导电线,将完全不存在这个问题,将彻底改写整个行业,我们可以直接以市电电压传输电力,完全不需要变电站,我们或许可以直接使用直流电。

但是,由于超导Tc(超导转变温度,指超导体由正常态进入超导态的温度)的限制,这一设想完全无法实现,我们现在发现的绝大部分超导体Tc都在77K(-196℃)以下,这是液氮的沸点,Tc在这之下的超导体大部分时候是使用更加昂贵的液氦制冷来使其进入超导态,只有少部分铜基超导体Tc达到了77K之上,可以使用液氮制冷来使其进入超导态。

即便如此,超导体在我们日常生活中已经有了应用,医院的核磁共振便采用了超导体,这就涉及了超导体的另一重大应用方向,即产生大磁场。

当我们需要一个很大的磁场时,我们首先想到的是什么?磁铁?不不不,永磁体的磁场远远达不到我们的要求,再回想一下初中二年级的物理知识,没错,通电螺线管!!利用电流,我们也可以得到磁场,更令人振奋的是,磁感应强度与电流强度成正比,也就是说,电流越大,磁场越强。

但大电流就会遇到上文提到的两个问题,焦耳热与压降,大电流会产热,更令人绝望的是焦耳热与电流的平方成正比,因此,电流每增加一分,磁场就会相应增强一分,但产热会按平方增加,最终绝大多数能量都将转化为内能。

焦耳热的来源是电阻,只要没有电阻,就可以完全不考虑焦耳热的影响,因此超导体在这里的意义就显而易见了,我们如果利用超导体线材制作线圈,就可以几乎无节制(磁场也可以抑制超导态,这里需要注意产生的磁场不能超过超导体的临界磁场)地提升线圈内的电流强度,进而获得强大的磁场。这就是核磁共振中强大磁性的来源。

除了以上场景,利用两个不同超导体做成的约瑟夫森结也有重要应用价值,我们可以利用它制作SQUID,这个装置是目前最精确的磁场探测装置,在超导量子计算机中也有重要应用。

看到这里,你应该对室温超导的意义有一定认知了,如果我们真的可以发现常压下的室温超导,那将使整个人类社会产生重大改变,我们现有的科技可能面临颠覆,能源问题得到重大缓解,对整个人类都具有重大进步意义。

我们还是简单介绍一下超导体的发现历程及其输运性质,这有利于我们理解Dias的工作。

二、超导的发现及其机理

1911年,昂内斯改进了制冷设备,率先将温度降至液氦沸点之下,在此期间,他发现汞的电阻在4.2K时突然降为零,经过再三确认,他最终确定,这不是实验上的失误或误差,这是汞本征的性质,由此,他打开了超导的大门,汞也是我们发现的第一个超导体,Tc为4.2K。

昂内斯仅仅测量的汞的电阻,这揭示了超导体在电输运上的特征,也就是零电阻。

后来,1933年,迈斯纳在对进入超导态的锡或铅金属球做磁场分布测量时发现,当材料进入超导态后,其内部的磁场会迅速被排出体外,磁场只在超导体外部存在,超导体展现出完全抗磁性,这就是迈斯纳效应。

后来的研究发现,超导体可以进一步划分为第一类超导体和第二类超导体,第一类超导体展现出完全的抗磁效应,内部完全没有磁场。而第二类超导体则允许磁场在超导体内部产生磁通量子,也就是允许磁场部分地进入超导体。

以上对超导体的研究更多地还停留在对其性质探究,我们实际上也一直在寻找超导的内在机理,探索其本质。

最开始的尝试是伦敦方程,不过这个理论无法揭示穿透深度与外磁场的关系。1950年左右,前苏联科学家金兹堡和朗道提出了解释超导的唯象理论——金兹堡-朗道理论(G-L理论)。该理论建立在朗道二级相变理论的基础上,用序参量描述超导体。该理论成功解释了超导体,上文提到的第一类超导体与第二类超导体就是根据G-L方程求解的界面能的正负判定的。

根据G-L理论,超导体从正常态到超导态的转变是一个二级相变,因此,理论上我们可以在比热的测量中发现其在Tc处有一个跃变,或者叫一个峰。后来这也在实验上被证实。

看到这里,你应该也发现了,超导的文章特别好写,测一下电阻,测一下磁化率,如果可以的话,再测一下比热,比热即便测不了也不是什么大事,搞完这些就齐活了。

最后还要简单提一下,我们目前解释超导的最好的理论就是BCS理论,这个理论的核心就是电子在与晶格的耦合中会出现电子吸引电子的可能,这样两个电子会结成库珀对,结成库珀对的电子可以看作玻色子,在低温下,发生“凝聚”,能量可以无耗散地在凝聚的库珀对中流动,实现超导态。

但BCS理论也不能解释所有超导态,我们根据BCS理论计算得到麦克米兰极限,即符合BCS理论的超导体Tc不会超过40K,但实际上很多超导体都突破了这一极限,比如铜基超导和铁基超导,这样的超导体被称为高温超导体,也就是说相对于之前20K以下的超导体,Tc高了很多。

本来还想介绍一下实验中高压的获取,篇幅所限,有机会再聊。

三、新的室温超导

有了上面这些预备知识,我们就可以一起来看一下这篇已经被发表在nature上的文章了。

[责任编辑:]